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1 Introduction

Let S be a set of sistinct points of xy-plane, R2. Assume that no three points of S locate on a line

and no two points of S have same x-coordinate or same y-coordinate. Let conv S be the convex

hull of S and let V (conv S) be the set of points of S on the boundary of conv S.

For a, b ∈ R2 let B(a, b) denote the minimal closed box ( called a standard box) with sides

parallel to the axes, containing a and b. A pair of points {a, b} of S is called separated (in S) if

A ∩ B(a, b) = {a, b}. Let GS denote the separation graph of S, that is, the graph on the set of

vertices S in which a, b ∈ S are joined iff a, b is separated.

f(n) = max{|E(GS)| : S⊂ R2, |S| = n}.
A notion of separation in Rd was introduced by Alon, Füredi and Katchalski in [1] and they

obtained that

f(n) ≥ �n2/4�+ n − 2 for all n ≥ 2.

This result is sharp, i.e. for every n ≥ 2 there exists a set S in which the number of edges of GS

coincides with the value of the right side of the above inequation. Related problems are discussed

in general dimension in [1]. In [2] Nakamigawa and Watanabe introduced a notion k-separation

as a generalization of“ separation”as follows. A pair of points {a, b} of S is called k-separated if

there exists a weakly monotone sequence in S with k+1 points containing a and b as its endpoints.

Then separation means 2-separartion in this definition. For a positive integer n, let f(n, k) be the

smallest integer t such that every n-set S ⊂ R2 has t-separated pairs. They determined f(n, 3)

for all n. See [2] for detail.

In this paper we study some characteristic of a separation graph. The next theorem is our main

result. A term ”covered” in the theorem is slightly different from that of standared as follows: A

convex hull of S, conv S, is coverded by a set S of some standard boxes obtained from S means

that for any point a ∈ conv S there exists a standared box R ∈ S and every standared box does

not contain any point of S in its interior.
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Theorem 1 Let n = |S| ≥ 3 and let m = |V (conv S)|. If every two adjacent points on the

boundary of conv S such that {a, b} is separated, then conv S is covered by at most 3n − m − 3

standard boxes. And there exists an example needed 3n − m − 3 standard boxes. Moreover, there

exists an example whose convex hull is covered by �3n/2� − 2 standard boxes.

2 Lemmas

Before describing lemmas let us recall that for any finite set S of points in R2 and for any non-

negative integer k, if S′ is obtained from S by rotating kπ/2 radian or turning S over, then GS′

is isomorphic to GS . It is trivial but useful, so we will often use it in the discussion from now on

without notice. We need two lemmas To prove Theorem 1.

Lemma 2 Let n = |S| ≥ 3. If every 2-subset of adjacent points on the boundary of conv S is

separated, then there exists a plane spanning subgraph of GS in which each face except the outer

region is a triangle.

Lemma 3 Let n = |S| ≥ 3. If every 2-subset of adjacent points on the boundary of conv S is

separated and S = V (conv S), then GS contains a plane internal traiangulation as a subgraph.

Here, we define some notations to prove the above lemmas.

For a ∈ R2, let lH(a) (resp. lV (a)) denote the straight line passing through a and pararell to

x-axis (resp. y-axis). For a ∈ S and a vertical line l, let l+ (resp. l−) denote the right (resp. left)

region of l. For a straight line l unless parallel to y-axis, let l+ (resp. l−) denote the upper (resp.

lower) region of l. For two points a, b, let l(a, b) denote the straight line passing through a and b.

For a ∈ R2 let x(a) (resp. y(a)) denote x-cordinate (resp. y-cordinate) of a. Let conv S denote

the convex hull of S. Let V (conv S) denote the set of points of S on the boundary of conv S. For

a graph G = G(S) and a ∈ S, let NG(a) denote the neighborhood of a.

Proof of Lemma 3. We apply induction on n. If n = 3 then the assertion holds. Now let n ≥ 4,

and assume the assertion is true for smaller sets. Let us now consider a set S = {a1, a2, · · · , an}
satisfied with the conditions of the assertion. Without loss of generality we may assume that

x(a1) < x(a2) < · · · < x(an). We divide the proof into two cases.

Case 1. All points of S are in the upper or lower region to the line l(a1, an).

Without loss of generality we assume that all points are in the upper region to the line l(a1, an)

and assume that next to an, ai has the largest y-coordinate point in S. By using aian ∈ E(GS),
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we divide the boundary of conv S two polygons, i.e. the polygon with S1 = {a1, ai, an} as the

vertex set and the other with S1 \ {a1}. Both S1 and S2 are satisfied with the conditions of the

assertion of the lemma. By induction hypothesis both GS1 and GS2 have plane triangulations as

subgraph, then GS1∪S2 = GS also contains a plane triangulation as a subgraph.

Case 2. There are points of S in both the upper regions and the lower region to the line

l(a1, an).

Since n ≥ 4, there exist an integer i (1 < i < i + 1 < n) such that aiai+1 ∈ E(GS) divides

the boundary of conv S into two polygons, i.e. the polygon with S1 = {a1, .., ai, ai+1} as the

vertex set and the other with S2 = {ai, ai+1, · · · , an}. Then, In this case, by induction hypothesis

GS1∪S2 = GS also contains a plane triangulation as a subgraph.

Proof of Lemma 2. Let G0 be the plane triangulation constructed in the proof in lemma 3. We

apply induction on order of a set T with V (conv S) ⊆ T ⊆ S. For T = V (conv S) the

assurmption holds by lemma 3. We assume that T with V (conv S) ⊂ T ⊂ S. Choose an

arbitrary point v ∈ S \ T . Let 
pqr be the triangle of GT containing v. By using lines lV (r) and

lV (r), we divide 
pqr into four regions shown as follows.

I1 := 
pqr ∩ l+V (r) ∩ l+H(q)

I2 := 
pqr ∩ l−V (r) ∩ l+H(q)

I3 := 
pqr ∩ l−V (r) ∩ l−H(q)

I4 := 
pqr ∩ l+V (r) ∩ l−H(q)

Case 1. v ∈ I1

Note that qr ∈ E(GT ) is not the boundary of GT . In fact, if qr is an edge on the boundary of GT ,

then qr ∈ E(GS) must be an edge on the boundary of GS . Then {q, r} is not separated in S, a

contradiction.

We prepare some notations to simplify the arguments below.

A := l+V (r) ∩ l+V (v) ∩ l+H(r)

A′ := l+V (v) ∩ l+H(r)

B := l−H(v) ∩ l+H(q) ∩ l+V (q)

B′ := l+V (q) ∩ l+H(v)

For any edge e ∈ EG(A, B) when there is no point s ∈ (A′ ∪ B′) ∩ S with l(vs) ∩ e �= φ, we

define a graph GT ′ with T ′ := T ∪ {v} as the vertex set by:



118 渡辺　　守

EGT ′ := EGT ∪ {vp, vq, vr}
If there exists such point s ∈ (A′ ∪ B′) ∩ S, we choose point s so that |l(v, s) ∩ e| has a minimum

value among e ∈ E(GT )(A, B). Then e ∈ E(GT (A, B)) if and only if e ∈ E(GT ) ∩ l(v, s).

Now let us suppose that

E(GT (A, B)) =: {a1b1 = qr, a2b2, · · · , akbk}
where x(a1) < x(a2) < · · · < x(ak) < · · · < x(b1) < · · · < x(bk), and a′

is andb′js are not necessarily

different, respectively.

Hence y(a1) < y(a2) < · · · < y(ak) < · · · < y(b1) < · · · < y(bk), for otherwise, there exists an

integer i such that x(ai) < x(ai+1) < x(bi) and y(ai) < y(ai+1) < y(bi), so ai+1 ∈ R(ai, bi), which

contradicts to aibi ∈ E(GT ).

Then define a graph GT ′ with T ′ := T ∪ {v} as the vertex set by:

T ′ := T ∪ {v} and

E(GT ′ ) := (E(GT ) \ E(GT (A, B)) ∪ {vp, vq, vr} ∪ {va1, · · · , vak, vs, vb1, · · · , vbk}.
The graph GT ′ is a plane graph containing v ∈ 
pqr, so the case completes.

Each proof in the following three cases is similar to Case 1, and is omitted. We would like to note

what is a set corresponding to A, A′, B and B′ respectively. In each case those sets are given as

follows.

Case 2: v ∈ I2

A := l−V (p) ∩ l−H(v) ∩ l+H(r)

A′ := l+H(v) ∩ l−V (p)

B := l+V (v) ∩ l−V (q) ∩ l+H(q)

B′ := l−V (v) ∩ l+H(q)

Case 3: v ∈ I3

In the case there exist two couples (A, B), (C, D):

A := l−V (p) ∩ l−H(v) ∩ l+H(p)

A′ := l−V (p) ∩ l−V (p) ∩ l+H(v)

B := l+V (v) ∩ l−V (r) ∩ l+H(r)

B′ := l−V (v) ∩ l+H(r)

C := l+V (p) ∩ l−V (v) ∩ l−H(p)

C′ := l+V (v) ∩ l−H(p)

D := l+V (q) ∩ l+H(v) ∩ l−H(q)

D′ := l+V (q) ∩ l−H(v)
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Case 4: v ∈ I4

A := l+V (p) ∩ l−V (v) ∩ l−H(p)

A′ := l+V (v) ∩ l−H(p)

B := l+V (q) ∩ l+H(v) ∩ l−H(q)

B′ := l+V (q) ∩ l−H(v)

3 Proof of Theorem 1

By lemma 2, there exists a planar subgraph G′ of G in which all faces except the infinite face are

triangles. Let m = |V (conv S)| and let f be the number of faces except the infinite face. By Euler’s

formula, the total number of edges of the boundary of each face is equal to 3f + m = 2|E(GS)|.
On the other hand, by the same formula, we have that n− |E(GS)|+ (f + 1) = 2. Thus 3f + m =

2|E(GS)|, and then |E(GS)| = 3n − m − 3.

Figure 1:

Now, for any point a ∈ S there exists a unique triangle of G′, say 
pqr containg a in the

interior. It is obvious to check that a ∈ R(p, q) ∪ R(q, r) ∪ R(r, p). Hence conv S is covered by at

most 3n − m − 3 standard boxes.

Moreover, there exists an infinite series of examples ataining to this value. Arrange the points of

S (|S| = n, m = |V (conv S)|) such that one is in the origin and the others are on a circle in the

first quadrant (see Figure 1). Then it is obvious that 3m − n − 3 = n − 3 boxes are needed to

cover conv S.
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Figure 2:

For a sufficiently small real number ε, put

At := (3t + 2, 3t + 1
2 t(t + 1)ε), Bt := (3t + 1

2 t(t + 1)ε, 3t + 2).

Consider the following set (see Figure 2):

S := {At; 0 ≤ t ≤ k} ∪ {Bt; 0 ≤ t ≤ k}

Then |S| = 2k + 2, so 3k + 1 = 3
2n − 2 standard boxes are needed to cover conv S. Indeed, for

each k(0 ≥ k ≥ n − 1) the quadrilateral formed by four points At, Bt, At+1, Bt+1 is covered by

four standard boxes, R(At, Bt), R(Bt, Bt+1), R(At, At+1), R(At+1, Bt), except four corner points.

Moreover, if we consider the following set (see Figure 2):

S′ := S ∪ Bt+1.

Then |S′| = 3k + 3, so � 3
2n� − 2 standard boxes are needed to cover conv S′.

References
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Let S be a finite set of distinct points in the plane, R2. For a, b ∈ R2 let B(a, b) denote the

minimal closed box with sides parallel to the axes, containing a, b. A pair of points {a, b} of S

is called separated (in S) if S ∩ B(a, b) = {a, b}. Let GS denote the separation graph of S, that

is, the graph on the set of vertices S in which a, b ∈ S are joined iff a, b is separated. Notions of

separation and separation graph were introduced by Alon, Füredi and Katchalski. In this paper

we give the following result.

Let n = |S| ≥ 3. If every 2-subset of adjacent points on the boundary of conv S is separated,

then there exists a plane spanning subgraph of GS in which each face except the outer region is a

triangle. Moreover, we give an application of this result to computational geometry.
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