Separation graphs and their plane spanning subgraphs

渡辺 守
倉敷芸術科学大学産業科学技術学部
（2004年9月24日 受理）

1 Introduction

Let S be a set of sistinct points of $x y$－plane， \mathbf{R}^{2} ．Assume that no three points of S locate on a line and no two points of S have same x－coordinate or same y－coordinate．Let conv S be the convex hull of S and let $V($ conv $S)$ be the set of points of S on the boundary of conv S ．
For $a, b \in \mathbf{R}^{2}$ let $B(a, b)$ denote the minimal closed box（called a standard box）with sides parallel to the axes，containing a and b ．A pair of points $\{a, b\}$ of S is called separated（in S ）if $A \cap B(a, b)=\{a, b\}$ ．Let G_{S} denote the separation graph of S ，that is，the graph on the set of vertices S in which $a, b \in S$ are joined iff a, b is separated．

$$
f(n)=\max \left\{\left|E\left(G_{S}\right)\right|: S \subset \mathbf{R}^{2},|S|=n\right\}
$$

A notion of separation in $\mathbf{R}^{\mathbf{d}}$ was introduced by Alon，Füredi and Katchalski in［1］and they obtained that

$$
f(n) \geq\left\lfloor n^{2} / 4\right\rfloor+n-2 \text { for all } n \geq 2 .
$$

This result is sharp，i．e．for every $n \geq 2$ there exists a set S in which the number of edges of G_{S} coincides with the value of the right side of the above inequation．Related problems are discussed in general dimension in［1］．In［2］Nakamigawa and Watanabe introduced a notion k－separation as a generalization of＂separation＂as follows．A pair of points $\{a, b\}$ of S is called k－separated if there exists a weakly monotone sequence in S with $k+1$ points containing a and b as its endpoints． Then separation means 2－separartion in this definition．For a positive integer n ，let $f(n, k)$ be the smallest integer t such that every n－set $S \subset \mathbf{R}^{2}$ has t－separated pairs．They determined $f(n, 3)$ for all n ．See［2］for detail．

In this paper we study some characteristic of a separation graph．The next theorem is our main result．A term＂covered＂in the theorem is slightly different from that of standared as follows：A convex hull of S ，conv S ，is coverded by a set \mathcal{S} of some standard boxes obtained from S means that for any point $a \in \operatorname{conv} S$ there exists a standared box $R \in \mathcal{S}$ and every standared box does not contain any point of S in its interior．

Theorem 1 Let $n=|S| \geq 3$ and let $m=|V(\operatorname{conv} S)|$ ．If every two adjacent points on the boundary of conv S such that $\{a, b\}$ is separated，then conv S is covered by at most $3 n-m-3$ standard boxes．And there exists an example needed $3 n-m-3$ standard boxes．Moreover，there exists an example whose convex hull is covered by $\lceil 3 n / 2\rceil-2$ standard boxes．

2 Lemmas

Before describing lemmas let us recall that for any finite set S of points in $\mathbf{R}^{\mathbf{2}}$ and for any non－ negative integer k ，if S^{\prime} is obtained from S by rotating $k \pi / 2$ radian or turning S over，then $G_{S^{\prime}}$ is isomorphic to G_{S} ．It is trivial but useful，so we will often use it in the discussion from now on without notice．We need two lemmas To prove Theorem 1.

Lemma 2 Let $n=|S| \geq 3$ ．If every 2－subset of adjacent points on the boundary of conv S is separated，then there exists a plane spanning subgraph of G_{S} in which each face except the outer region is a triangle．

Lemma 3 Let $n=|S| \geq 3$ ．If every 2－subset of adjacent points on the boundary of conv S is separated and $S=V($ conv $S)$ ，then G_{S} contains a plane internal traiangulation as a subgraph．

Here，we define some notations to prove the above lemmas．
For $a \in \mathbf{R}^{2}$ ，let $l_{H}(a)$（resp．$\left.l_{V}(a)\right)$ denote the straight line passing through a and pararell to x－axis（resp．y－axis）．For $a \in S$ and a vertical line l ，let l^{+}（resp．l^{-}）denote the right（resp．left） region of l ．For a straight line l unless parallel to y－axis，let l^{+}（resp．l^{-}）denote the upper（resp． lower）region of l ．For two points a, b ，let $l(a, b)$ denote the straight line passing through a and b ． For $a \in \mathbf{R}^{2}$ let $x(a)$（resp．$y(a)$ ）denote x－cordinate（resp．y－cordinate）of a ．Let conv S denote the convex hull of S ．Let $V(\operatorname{conv} S)$ denote the set of points of S on the boundary of conv S ．For a graph $G=G(S)$ and $a \in S$ ，let $N_{G}(a)$ denote the neighborhood of a ．

Proof of Lemma 3．We apply induction on n ．If $n=3$ then the assertion holds．Now let $n \geq 4$ ， and assume the assertion is true for smaller sets．Let us now consider a set $S=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$ satisfied with the conditions of the assertion．Without loss of generality we may assume that $x\left(a_{1}\right)<x\left(a_{2}\right)<\cdots<x\left(a_{n}\right)$ ．We divide the proof into two cases．

Case 1．All points of S are in the upper or lower region to the line $l\left(a_{1}, a_{n}\right)$ ．
Without loss of generality we assume that all points are in the upper region to the line $l\left(a_{1}, a_{n}\right)$ and assume that next to a_{n}, a_{i} has the largest y－coordinate point in S ．By using $a_{i} a_{n} \in E\left(G_{S}\right)$ ，
we divide the boundary of conv S two polygons, i.e. the polygon with $S_{1}=\left\{a_{1}, a_{i}, a_{n}\right\}$ as the vertex set and the other with $S_{1} \backslash\left\{a_{1}\right\}$. Both S_{1} and S_{2} are satisfied with the conditions of the assertion of the lemma. By induction hypothesis both $G_{S_{1}}$ and $G_{S_{2}}$ have plane triangulations as subgraph, then $G_{S_{1} \cup S_{2}}=G_{S}$ also contains a plane triangulation as a subgraph.

Case 2. There are points of S in both the upper regions and the lower region to the line $l\left(a_{1}, a_{n}\right)$.

Since $n \geq 4$, there exist an integer $i \quad(1<i<i+1<n)$ such that $a_{i} a_{i+1} \in E\left(G_{S}\right)$ divides the boundary of conv S into two polygons, i.e. the polygon with $S_{1}=\left\{a_{1}, . ., a_{i}, a_{i+1}\right\}$ as the vertex set and the other with $S_{2}=\left\{a_{i}, a_{i+1}, \cdots, a_{n}\right\}$. Then, In this case, by induction hypothesis $G_{S_{1} \cup S_{2}}=G_{S}$ also contains a plane triangulation as a subgraph.

Proof of Lemma 2. Let G_{0} be the plane triangulation constructed in the proof in lemma 3. We apply induction on order of a set T with $V(\operatorname{conv} S) \subseteq T \subseteq S$. For $T=V(\operatorname{conv} S)$ the assurmption holds by lemma 3 . We assume that T with $V($ conv $S) \subset T \subset S$. Choose an arbitrary point $v \in S \backslash T$. Let $\triangle p q r$ be the triangle of G_{T} containing v. By using lines $l_{V(r)}$ and $l_{V(r)}$, we divide $\triangle p q r$ into four regions shown as follows.

$$
\begin{aligned}
& I_{1}:=\triangle p q r \cap l_{V}^{+}(r) \cap l_{H}^{+}(q) \\
& I_{2}:=\triangle p q r \cap l_{V}^{-}(r) \cap l_{H}^{+}(q) \\
& I_{3}:=\triangle p q r \cap l_{V}^{-}(r) \cap l_{H}^{-}(q) \\
& I_{4}:=\triangle p q r \cap l_{V}^{+}(r) \cap l_{H}^{-}(q)
\end{aligned}
$$

Case 1. $v \in \mathrm{I}_{1}$

Note that $q r \in E\left(G_{T}\right)$ is not the boundary of G_{T}. In fact, if $q r$ is an edge on the boundary of G_{T}, then $q r \in E\left(G_{S}\right)$ must be an edge on the boundary of G_{S}. Then $\{q, r\}$ is not separated in S, a contradiction.

We prepare some notations to simplify the arguments below.

$$
\begin{aligned}
& A:=l_{V}^{+}(r) \cap l_{V}^{+}(v) \cap l_{H}^{+}(r) \\
& A^{\prime}:=l_{V}^{+}(v) \cap l_{H}^{+}(r) \\
& B:=l_{H}^{-}(v) \cap l_{H}^{+}(q) \cap l_{V}^{+}(q) \\
& B^{\prime}:=l_{V}^{+}(q) \cap l_{H}^{+}(v)
\end{aligned}
$$

For any edge $e \in E_{G}(A, B)$ when there is no point $s \in\left(A^{\prime} \cup B^{\prime}\right) \cap S$ with $l(v s) \cap e \neq \phi$, we define a graph $G_{T^{\prime}}$ with $T^{\prime}:=T \cup\{v\}$ as the vertex set by:

$$
E_{G_{T^{\prime}}}:=E_{G_{T}} \cup\{v p, v q, v r\}
$$

If there exists such point $s \in\left(A^{\prime} \cup B^{\prime}\right) \cap S$ ，we choose point s so that $|l(v, s) \cap e|$ has a minimum value among $e \in E\left(G_{T}\right)(A, B)$ ．Then $e \in E\left(G_{T}(A, B)\right)$ if and only if $e \in E\left(G_{T}\right) \cap l(v, s)$ ．

Now let us suppose that

$$
E\left(G_{T}(A, B)\right)=:\left\{a_{1} b_{1}=q r, a_{2} b_{2}, \cdots, a_{k} b_{k}\right\}
$$

where $x\left(a_{1}\right)<x\left(a_{2}\right)<\cdots<x\left(a_{k}\right)<\cdots<x\left(b_{1}\right)<\cdots<x\left(b_{k}\right)$ ，and a_{i}^{\prime} s and b_{j}^{\prime} s are not necessarily different，respectively．

Hence $y\left(a_{1}\right)<y\left(a_{2}\right)<\cdots<y\left(a_{k}\right)<\cdots<y\left(b_{1}\right)<\cdots<y\left(b_{k}\right)$ ，for otherwise，there exists an integer i such that $x\left(a_{i}\right)<x\left(a_{i+1}\right)<x\left(b_{i}\right)$ and $y\left(a_{i}\right)<y\left(a_{i+1}\right)<y\left(b_{i}\right)$ ，so $a_{i+1} \in R\left(a_{i}, b_{i}\right)$ ，which contradicts to $a_{i} b_{i} \in E\left(G_{T}\right)$ ．

Then define a graph $G_{T^{\prime}}$ with $T^{\prime}:=T \cup\{v\}$ as the vertex set by：
$T^{\prime}:=T \cup\{v\}$ and

$$
E\left(G_{T^{\prime}}\right):=\left(E\left(G_{T}\right) \backslash E\left(G_{T}(A, B)\right) \cup\{v p, v q, v r\} \cup\left\{v a_{1}, \cdots, v a_{k}, v s, v b_{1}, \cdots, v b_{k}\right\}\right.
$$

The graph $G_{T^{\prime}}$ is a plane graph containing $v \in \triangle p q r$ ，so the case completes．
Each proof in the following three cases is similar to Case 1，and is omitted．We would like to note what is a set corresponding to A, A^{\prime}, B and B^{\prime} respectively．In each case those sets are given as follows．

Case 2：$\quad v \in \mathrm{I}_{2}$

$$
\begin{aligned}
A & :=l_{V}^{-}(p) \cap l_{H}^{-}(v) \cap l_{H}^{+}(r) \\
A^{\prime} & :=l_{H}^{+}(v) \cap l_{V}^{-}(p) \\
B & :=l_{V}^{+}(v) \cap l_{V}^{-}(q) \cap l_{H}^{+}(q) \\
B^{\prime} & :=l_{V}^{-}(v) \cap l_{H}^{+}(q)
\end{aligned}
$$

Case 3：$v \in \mathrm{I}_{3}$
In the case there exist two couples $(A, B),(C, D)$ ：

$$
\begin{aligned}
& A:=l_{V}^{-}(p) \cap l_{H}^{-}(v) \cap l_{H}^{+}(p) \\
& A^{\prime}:=l_{V}^{-}(p) \cap l_{V}^{-}(p) \cap l_{H}^{+}(v) \\
& B:=l_{V}^{+}(v) \cap l_{V}^{-}(r) \cap l_{H}^{+}(r) \\
& B^{\prime}:=l_{V}^{-}(v) \cap l_{H}^{+}(r) \\
& C:=l_{V}^{+}(p) \cap l_{V}^{-}(v) \cap l_{H}^{-}(p) \\
& C^{\prime}:=l_{V}^{+}(v) \cap l_{H}^{-}(p) \\
& D:=l_{V}^{+}(q) \cap l_{H}^{+}(v) \cap l_{H}^{-}(q) \\
& D^{\prime}:=l_{V}^{+}(q) \cap l_{H}^{-}(v)
\end{aligned}
$$

Case 4: $\quad v \in \mathrm{I}_{4}$

$$
\begin{aligned}
& A:=l_{V}^{+}(p) \cap l_{V}^{-}(v) \cap l_{H}^{-}(p) \\
& A^{\prime}:=l_{V}^{+}(v) \cap l_{H}^{-}(p) \\
& B:=l_{V}^{+}(q) \cap l_{H}^{+}(v) \cap l_{H}^{-}(q) \\
& B^{\prime}:=l_{V}^{+}(q) \cap l_{H}^{-}(v)
\end{aligned}
$$

3 Proof of Theorem 1

By lemma 2, there exists a planar subgraph G^{\prime} of G in which all faces except the infinite face are triangles. Let $m=|V(\operatorname{conv} S)|$ and let f be the number of faces except the infinite face. By Euler's formula, the total number of edges of the boundary of each face is equal to $3 f+m=2\left|E\left(G_{S}\right)\right|$. On the other hand, by the same formula, we have that $n-\left|E\left(G_{S}\right)\right|+(f+1)=2$. Thus $3 f+m=$ $2\left|E\left(G_{S}\right)\right|$, and then $\left|E\left(G_{S}\right)\right|=3 n-m-3$.

Figure 1:

Now, for any point $a \in S$ there exists a unique triangle of G^{\prime}, say $\triangle p q r$ containg a in the interior. It is obvious to check that $a \in R(p, q) \cup R(q, r) \cup R(r, p)$. Hence conv S is covered by at most $3 n-m-3$ standard boxes.

Moreover, there exists an infinite series of examples ataining to this value. Arrange the points of $S(|S|=n, m=|V(\operatorname{conv} S)|)$ such that one is in the origin and the others are on a circle in the first quadrant (see Figure 1). Then it is obvious that $3 m-n-3=n-3$ boxes are needed to cover conv S.

Figure 2：

For a sufficiently small real number ϵ ，put

$$
A_{t}:=\left(3 t+2,3 t+\frac{1}{2} t(t+1) \epsilon\right), B_{t}:=\left(3 t+\frac{1}{2} t(t+1) \epsilon, 3 t+2\right) .
$$

Consider the following set（see Figure 2）：

$$
S:=\left\{A_{t} ; 0 \leq t \leq k\right\} \cup\left\{B_{t} ; 0 \leq t \leq k\right\}
$$

Then $|S|=2 k+2$ ，so $3 k+1=\frac{3}{2} n-2$ standard boxes are needed to cover conv S ．Indeed，for each $k(0 \geq k \geq n-1)$ the quadrilateral formed by four points $A_{t}, B_{t}, A_{t+1}, B_{t+1}$ is covered by four standard boxes，$R\left(A_{t}, B_{t}\right), R\left(B_{t}, B_{t+1}\right), R\left(A_{t}, A_{t+1}\right), R\left(A_{t+1}, B_{t}\right)$ ，except four corner points． Moreover，if we consider the following set（see Figure 2）：

$$
S^{\prime}:=S \cup B_{t+1}
$$

Then $\left|S^{\prime}\right|=3 k+3$ ，so $\left\lceil\frac{3}{2} n\right\rceil-2$ standard boxes are needed to cover conv S^{\prime} ．

References

［1］N．Alon，Z．Füredi and M．Katchalski，Separating pairs of points by standard boxes，Eu－ rop．J．Combinatorics，6（1985），205－210．
［2］T．Nakamigawa and M．Watanabe，Separating pairs of points in the plane by monotone subsequences，Austlasian J．Combinatorics，30（2004），223－227．

Separation graphs and their plane spanning subgraphs

Mamoru Watanabe
College of Science and Industrial Technology
Kurashiki University of Science and the Arts, 2640 Nishinoura, Tsurajima-cho, Kurashiki-shi, Okayama 712-8505, Japan

(Received September 24, 2004)

Let S be a finite set of distinct points in the plane, $\mathbf{R}^{\mathbf{2}}$. For $a, b \in \mathbf{R}^{\mathbf{2}}$ let $B(a, b)$ denote the minimal closed box with sides parallel to the axes, containing a, b. A pair of points $\{a, b\}$ of S is called separated (in S) if $S \cap B(a, b)=\{a, b\}$. Let G_{S} denote the separation graph of S, that is, the graph on the set of vertices S in which $a, b \in S$ are joined iff a, b is separated. Notions of separation and separation graph were introduced by Alon, Füredi and Katchalski. In this paper we give the following result.

Let $n=|S| \geq 3$. If every 2-subset of adjacent points on the boundary of conv S is separated, then there exists a plane spanning subgraph of G_{S} in which each face except the outer region is a triangle. Moreover, we give an application of this result to computational geometry.

