A sufficient condition for the existence of a Hamiltonian cycle in a separation graph

渡辺 守

倉敷芸術科学大学産業科学技術学部

(2005年9月30日 受理)

1 Introduction and Definitions

Let S be a finite set of distinct points in the plane, $\mathbf{R^2}$. For $a,b \in \mathbf{R^2}$ let B(a,b) denote the minimal closed rectangle with sides parallel to the axes, containing a,b. A pair of points $\{a,b\}$ of S is called *separated* (in S) if $S \cap B(a,b) = \{a,b\}$. Let G_S denote the *separation graph* of S, that is, the graph on the set of vertices S in which $a,b \in S$ are joined iff $\{a,b\}$ is separated. Let $E(G_S)$ denote the edge set of G_S and put $f(n) = max\{|E(G_S)| : S \subset \mathbf{R^2}, |S| = n\}$. The notions of separation and separation graph in $\mathbf{R^2}$ were introduced by Alon, Füredi and Katchalski in [1] and they showed that

$$f(n) = |n^2/4| + n - 2$$
 for all $n \ge 2$.

In [2] Nakamigawa and Watanabe generalized the notion of the separation graph. In [3] Watanabe showed that if $n = |S| \ge 3$ and every pair of adjacent points on the boundary of the convex hull of S is separated, then there exists a spanning subgraph of G_S which each face except the outer region is a triangle.

In this paper, we present a sufficient condition for having a Hamilton cycle in a separation graph. We need some definitions before describing the main theorem. Let S denote a set of points of xy-plane. Throughout this paper, we assume that no three points of S lie on a line and no two points of S have the same x-coordinate or y-coordinate. Let conv S denote the convex hull of S and let $\mathcal{E}(conv$ S) denote the edge set of conv S. For any edge $ab \in \mathcal{E}(conv$ S), when B(a,b) is divided by the diagonal ab to two right triangles, let Δ_{ab} denote the right triangle which contains interior points (not neccesary to be a point of S) of conv S. We call Δ_{ab} a delta associated with ab. For distinct edges $ab, cd \in \mathcal{E}(conv$ S), a pair $\{ab, cd\}$ is said to be closed if $\Delta_{ab} \cap \Delta_{cd}$ forms a polygon (see Fig.1). Throughout this paper whenever werite $ab \in \mathcal{E}(conv$ S), w.l.o.g the points a,b lie on the boundary of convS in clockwise order.

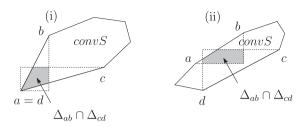


Figure 1: Examples of closed pair

If there exists a closed pair of edges in $\mathcal{E}(conv\ S)$, G_S is not always Hamiltonian. In Fig.1 (i), if $\Delta_{ab} \cap \Delta_{cd}$ contains only one point d of S in its interior, then G_S is non-Hamiltonian, since the degree of a in G_S is one. A pair of deltas $\{\Delta_{ab}, \Delta_{cd}\}$ is said to be good if it satisfies the following conditions:

- (i) a, b, c, d lie in the boundary of conv S in clockwise order;
- (ii) $\Delta_{ab} \cap \Delta_{cd} = \emptyset$;
- (iii) the extending line of a horizontal or vertical edge of Δ_{ab} hits Δ_{cd} and simultaneously the extending line of a horizontal or vertical edge of Δ_{cd} hits Δ_{ab} .

If $\{\Delta_{ab}, \Delta_{cd}\}$ is a good pair and the slope of ab has a positive sign, by the previous assumption, then we may assume that x(a) < x(d) < x(b) < x(c) and y(d) < y(c) < y(a) < y(b). And we may assume that aa' and ba' are the legs of Δ_{ab} and cc', and dc' are the legs of Δ_{cd} . Then the extending line of ba' hits at a point, say b', in the leg cc' of Δ_{cd} and the extending line of dc' hits at a point, say d', in aa'. The rectangle a'b'c'd' is said to be associated with $\{\Delta_{ab}, \Delta_{cd}\}$ (see Fig. 2).

If there exists a pair $\{ab, cd\}$ of edges in $\mathcal{E}(conv\ S)$ such that an associated rectangle with $\{\Delta_{ab}, \Delta_{cd}\}$ contains a point of S, G_S is not always Hamiltonian. The set $S = \{a, b, c, d, e, f, g, h, z\}$ shown in Fig. 3 is such an example. In this case, the associated rectangle with $\{\Delta_{ab}, \Delta_{cd}\}$ contains z, and the associated rectangle with $\{\Delta_{ef}, \Delta_{gh}\}$ also contains z.

The following is our main theorem.

Theorem 1 Assume that $|\mathcal{E}(conv S)| \geq 4$ and $\mathcal{E}(conv S)$ contains no closed pair. If there exists an associated rectangle with a good pair of deltas which contains no points of S, then G_S is Hamiltonian.

In section 2 we shall prepare some lemmas to prove the theorem and in section 3 we shall prove the theorem.

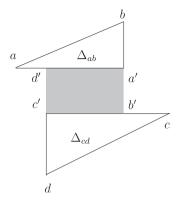


Figure 2: The rectangle a'b'c'd' associated with $\{\Delta_{ab},\Delta_{cd}\}$

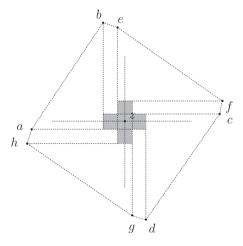


Figure 3: The graph G_S with $S=\{a,b,c,d,e,f,g,h,z\}$ is non-Hamiltonian

2 Lemmas

We begin by observing the following note. For any finite set S of points in \mathbb{R}^2 and for any non-negative integer k, if S' is obtained from S by rotating $k\pi/2$ radian or turning S over, then $G_{S'}$ is isomorphic to G_S . It is trivial but we will often use it in the discussion from now on.

Lemma 2 Let $|\mathcal{E}(conv S)| \ge 4$. If $\mathcal{E}(conv S)$ contains no closed pair, then there exists a good pair of deltas.

An orthogonal polygon is a polygon with edges which alternate between horizontal (zeroslope) and vertical (infinite slope). Let A_1, A_2, \dots, A_m be a consecutive sequence of the vertices of a polygon is called monotone with respect with to a line L if the projections of A_1, A_2, \dots, A_m onto L are ordered the same as in the sequence A_1, A_2, \dots, A_m , that is, there is no doubling back in the projection as the sequence is traversed.

Let P_S denote the boundary of the region obtained by removing all the deltas from conv S.

Lemma 3 Let $|\mathcal{E}(conv \ S)| \ge 4$. Assume that $\mathcal{E}(conv \ S)$ has no closed pair. Then P_S is an one-connected orthogonal polygon and monotone with respect to both vertical line and horizontal line.

Proof. From the definition, P_S is composed by edges or parts of legs of some deltas, so P_S is clearly an orthogonal polygon. Since $\mathcal{E}(conv\ S)$ has no closed pair, for any two edges $ab, cd \in \mathcal{E}(conv\ S)$, $\Delta_{ab} \cap \Delta_{cd}$ does not form a polygon, so P_S is still one-connected. On the other hand, any vertical or horizontal straight line which intersects the boundary of $conv\ S$ at two points of $conv\ S$ intersects at most two deltas. It implies P_S is monotone. \square

Lemma 4 Assume that $p,q,r,s \in S$ form a trapezoid with base ps such that $pq \in \mathcal{E}(conv \ S)$ and ps,qr are parallel to x-ax. Then there exists a (p,q)-path (i.e. between p and q) in G_S which has p,q as endpoints and connects all points of S in the interior of the trapezoid pqrs.

Proof. By the assumption, we may assume w.l.o.g. that $pq \in \mathcal{E}(conv\ S)$, and ps,qr are parallel to x-ax. If the ordered list with respect to y-coordinate of all the points of S in the interior of the trapezoid pqrs is $a_1(=p), a_2, \dots, a_m(=q)$, then each $\{a_i, a_{i+1}\}$ $(1 \le i \le m-1)$ is separated, so $a_ia_{i+1} \in E(G_S)$ for all $1 \le i \le m-1$. Hence $a_1a_2 \cdots a_m$ is a path in G_S as required. \square

Corollary 5 If three points $p, q, s \in S$ form a right triangle such that the legs are ps, qs and ps is parallel to x-ax, then there exists a (p,q)-path in G_S which connects all points of S in the interior of the triangle pqs.

3 Proof of Main Theorem

If $|\mathcal{E}(conv\ S)| = 4$ and $\mathcal{E}(conv\ S) = \{a_1, a_2, a_3, a_4\}$, by the assumption, any pair of non-adjacent two edges of $\mathcal{E}(conv\ S)$ forms a good pair, then there exist no points of S in the interior of convS. By Cor. 5, for each i there exists (a_i, a_{i+1}) -path in G_S . Therefore by combining these four pathes we obtain a Hamilton cycle of G_S .

Assume that $|\mathcal{E}(conv\ S)| \geq 5$. By Lemma 3, P_S is an one-connected and monotone orthogonal polygon with respect to both vertical line and horizontal line. By Lemma 2, there exists two deltas Δ_{ab} , Δ_{cd} such that the interior of its associated rectangle (say a'b'c'd') contains no points of S.

We assume w.l.o.g that

$$x(a) < x(d) < x(b) < x(c) \text{ and } y(a) < y(b).$$

Then y(d) < y(c) < y(a).

The edges $ab, cd \in \mathcal{E}(conv\ S)$ divide the boundary of $conv\ S$ into two brokenlines. We denote by B_1 the broken line having a,d as endpoints and similarly denote by B_2 the the broken line having b,c as endpoints. Let A,B denote the point whose x-coordinate is minimum or maximum among all points of S, respectively. Similarly let C,D denote the point whose whose y-coordinate is minimum or maximum among all points of S, respectively. Then A,C lie in B_1 and B,D lie in B_2 . By removing the rectangle a'b'c'd' from P_S , we have at most two orthogonal polygons P_1,P_2 . It is possible that P_1 or P_2 is empty. In deed if $|\mathcal{E}(conv\ S)| = 5$ then bothe P_1 or P_2 is empty. We may assume that P_1 lies in P_S facing to the vertical edge of Δ_{ab} . Then P_2 lies in G_S facing the vertical edge of Δ_{cd} . We can divide each P_i into a collection of more small rectangles by two steps as follows.

First step: In P_1 , extend to downward the vertical leg of the delta of each edge of B_1 until it hits some delta. On the contrary in P_2 , extend to upward the vertical leg of the delta of each edge of B_2 until it hits some delta. Then the interior of each P_i is divided by

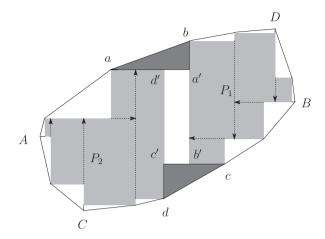


Figure 4: Rectangles of \mathcal{R} in the neighbor of A

some rectangles and some orthogonal rectangles containing some verticess whose interior angles are reflex.

Second step: In each subdivision obtained by the first step, the side opposite to a reflex vertex is an edge of $\mathcal{E}(conv\ S)$. Then for each subdivision T containing reflex vertices and for every reflex vertex t of T, extend the horizontal edge of the delta containing t until it hits some edge of T.

Let \mathcal{R} denote the collection of the rectangle a'b'c'd' and all the rectangles obtained by the above steps. Thus for each rectangle $R \in \mathcal{R}$, there exists exactly one delta, say Δ_{xy} , which either the vertical leg or the horizontal leg of Δ_{xy} coinsides with some side of R. Indeed, for any orthogonal polygon with reflexes in the subdivision in step 1 its all reflexes vanish in step 2.

Consider a couple of R and Δ_{xy} and absorbe R and Δ_{xy} to get a trapezuim. All rectangles of \mathcal{R} except rectangle a'b'c'd' can contribute to make this coupling (see Fig.4). And all deltas except two deltas (either of two deltas having A as vertices and either of two deltas having B as vertices) contribute this pairing (see Fig.5). Then we obtain a collection \mathcal{T} of the trapeziums which gives a new partition of $P_1 \cup P_2$. Hence for each edge $xy \in \mathcal{E}(conv S)$ which contributes to the above absorbing there exists a (x, y)-path in G_S passing through all points of S in a trapezium of \mathcal{T} which includes Δ_{xy} . Let \mathcal{H} be the set of all paths described above. On the other hand, it is trivial that for each delta Δ_{xy} (there exist at most two such deltas) which does not contribute the abobe coupling there exists a (x, y)-path in G_S passing through all points of S in Δ_{xy} . From the assumption, the interior of rectangle a'b'c'd' contains no points of S. Hence each point of S is in some path of \mathcal{H} .

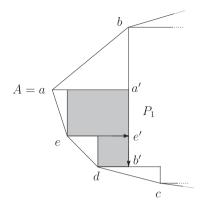


Figure 5: Orthogonal polygons P_1 , P_2 in the interior of P_S

Since $|\mathcal{E}(conv\ S)| \ge 4$, any two paths of \mathcal{H} contains at most one point of S in common. Thus \mathcal{H} consists a Hamilton cycle of G_S . \square

References

- [1] N. Alon, Z. Füredi and M. Katchalski, Separating pairs of points by standard boxes, Europ. J. Combinatorics, 6(1985), 205–210.
- [2] T. Nakamigawa and M. Watanabe, Separating pairs of points in the plane by monotone subsequences, Austlasian J. Combinatorics, **30**(2004), 223–227.
- [3] M. Watanabe, On a separation graph which has an internal plane triangulation as a subgraph, Bulletin of Kurashiki Univ. of Science and the Arts, **10**(2005), 115–121.

A Sufficient Condition for the Existence of a Hamilton Cycle in a Separation Graph

Mamoru Watanabe

Colledge of Science and Industrial Technology
Kurashiki University of Science and the Arts,
2640 Nishinoura, Tsurajima-cho, Kurashiki-shi, Okayama 712-8505, Japan
(Received September 30, 2005)

Let S be a finite set of distinct points in the plane, $\mathbf{R^2}$. For $a, b \in \mathbf{R^2}$ let B(a, b) denote the minimal closed box with sides parallel to the axes, containing a, b. Let G_S denote the separation graph of S, that is, the graph on the set of vertices S in which $a, b \in S$ are joined iff $S \cap B(a, b) = \{a, b\}$. The notions of separation and separation graph in $\mathbf{R^2}$ were introduced by Alon, Füredi and Katchalski in 1985. In this paper, we present a sufficient condition for the existence of a Hamilton cycle in a separation graph.