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A sufficient condition for the existence of a
Hamiltonian cycle in a separation graph
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1 Introduction and Definitions

Let S be a finite set of distinct points in the plane, R?. For a,b € R? let B(a,b)
denote the minimal closed rectangle with sides parallel to the axes, containing a,b. A
pair of points {a,b} of S is called separated (in S) if SN B(a,b) = {a,b}. Let Gg
denote the separation graph of S, that is, the graph on the set of vertices S in which
a,b € S are joined iff {a, b} is separated. Let F(Gg) denote the edge set of Gg and put
f(n) = max{|E(Gs)| : S € R?,|S| = n}. The notions of separation and separation graph
in R? were introduced by Alon, Fiiredi and Katchalski in [1] and they showed that
f(n)=|n%/4] +n—2 foralln > 2.

In [2] Nakamigawa and Watanabe generalized the notion of the separation graph. In [3]
Watanabe showed that if n = |S| > 3 and every pair of adjacent points on the boundary
of the convex hull of S is separated, then there exists a spanning subgraph of Gg which
each face except the outer region is a triangle.

In this paper, we present a sufficient condition for having a Hamilton cycle in a sepa-
ration graph. We need some definitions before describing the main theorem. Let S denote
a set of points of zy-plane. Throughout this paper, we assume that no three points of
S lie on a line and no two points of S have the same z-coordinate or y-coordinate. Let
conv S denote the convex hull of S and let £(conv S) denote the edge set of conv S.
For any edge ab € E(conv S), when B(a,b) is divided by the diagonal ab to two right
triangles, let A, denote the right triangle which contains interior points (not neccesary
to be a point of S) of conv S. We call Ay, a delta associated with ab. For distinct edges
ab,cd € E(conv S), a pair {ab, cd} is said to be closed if Ay, N A,y forms a polygon (see
Fig.1). Throughout this paper whenever werite ab € E(conv S), w.l.o.g the points a,b lie

on the boundary of convS in clockwise order.
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Aab N Acd

Figure 1: Examples of closed pair

If there exists a closed pair of edges in E(conv S), Gs is not always Hamiltonian.
In Fig.1 (i), if Ay N A contains only one point d of S in its interior, then G is non-
Hamiltonian, since the degree of a in Gg is one. A pair of deltas {Ay, Ay} is said to be
good if it satiffies the following conditions:
(i) a,b,c,d lie in the boundary of conv S in clockwise order;
(i) AwNAg=0;
(iii) the extending line of a horizontal or vertical edge of A, hits A,y and simultaneously

the extending line of a horizontal or vertical edge of A4 hits Agy.

If {Aup, Aca} is a good pair and the slope of ab has a positive sign, by the previous
assumption, then we may assume that z(a) < z(d) < z(b) < z(c) and y(d) < y(c) <
y(a) < y(b). And we may assume that aa’ and ba’ are the legs of A, and ¢, and dc’ are
the legs of A.y. Then the extending line of ba’ hits at a point, say ', in the leg cc’ of Ay
and the extending line of d¢’ hits at a point, say d’, in aa’. The rectangle a't'cd’ is said
to be associated with {Agy, A} (see Fig. 2).

If there exists a pair {ab, cd} of edges in E(conv S) such that an associated rectangle
with {Aup, A} contains a point of S, Gg is not always Hamiltonian. The set S =
{a,b,c,d,e, f,g,h,z} shown in Fig. 3 is such an example. In this case, the associated
rectangle with {Ag, A} contains z, and the associated rectangle with {A.;, Ay} also
contains z.

The following is our main theorem.

Theorem 1 Assume that |E(conv S)| > 4 and E(conv S) contains no closed pair. If
there exists an associated rectangle with a good pair of deltas which contains no points of

S, then Gg is Hamiltonian.

In section 2 we shall prepare some lemmas to prove the theorem and in section 3 we

shall prove the theorem.
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Figure 2: The rectangle a'b'c’d" associated with {Agp, Aca}
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Figure 3: The graph G5 with S = {a,b,c,d,e, f, g, h, z} is non-Hamiltonian
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2 Lemmas

We begin by observing the following note. For any finite set S of points in R? and for
any non-negative integer k, if S’ is obtained from S by rotating k7 /2 radian or turning S
over, then Gg is isomorphic to Gg. It is trivial but we will often use it in the discussion

from now on.

Lemma 2 Let |E(conv S)| > 4. If E(conv S) contains no closed pair, then there exists a

good pair of deltas.

Proof. Let z denote the lowest point of S. Then there exist adjacent points a, b with
z in the boundary of conv S such that z(a) < z(z) < z(b), since E(conv S) has no closed
pair. If the line segment A, N A, is extended to the vertical direction, then it hits some
delta A.s. We may assume w.l.o.g that cd has the same slope to az € E(conv §). If
the vertical edge of A4 is extended to the vertical direction, then it hits some delta A.y,
since £(conv S) has no closed pair again. Since the sign of the slope of ¢d and the slope
of ef have the same sign, z(f) < z(c) < xz(e) < z(z). Hence {cd,ef} is a good pair as
required. O

An orthogonal polygon is a polygon with edges which alternate between horizontal
(zeroslope) and vertical (infinite slope). Let Ay, As, -+, Ay be a consecutive sequence of
the vertices of a polygon is called monotone with respect with to a line L if the projections
of Ay, Ay, -+, A,, onto L are ordered the same as in the sequence A;, As, - -+, A,,, that is,
there is no doubling back in the projection as the sequence is traversed.

Let Pg denote the boundary of the region obtained by removing all the deltas from conv S.

Lemma 3 Let |E(conv S)| > 4. Assume that E(conv S) has no closed pair. Then Pg is
an one-connected orthogonal polygon and monotone with respect to both vertical line and

horizontal line.

Proof. From the definition, Ps is composed by edges or parts of legs of some deltas, so
Py is clearly an orthogonal polygon. Since &€(conv S) has no closed pair, for any two edges
ab,cd € E(conv S), Agp N Acq does not form a polygon, so Ps is still one-connected. On
the other hand, any vertical or horizontal straight line which intersects the boundary of

conv S at two points of conv S intersects at most two deltas. It implies Pg is monotone. O

Lemma 4 Assume that p,q,r,s € S form a trapezoid with base ps such that pq €
E(conv S) and ps, qr are parallel to x-azx. Then there exists a (p,q)-path (i.e. between p
and q) in Gg which has p,q as endpoints and connects all points of S in the interior of

the trapezoid pqrs.
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Proof. By the assumption, we may assume w.l.0.g. that pg € E(conv S), and ps, qr
are parallel to z-ax. If the ordered list with respect to y-coordinate of all the points of S
in the interior of the trapezoid pgrs is ai(= p), az, - - -, am(= q), then each {a;, a;11} (1 <
i <m — 1) is separated, so a;a;41 € E(Gg) for all 1 <i <m — 1. Hence ajay---a,, is a

path in Gg as required. O

Corollary 5 If three points p,q,s € S form a right triangle such that the legs are ps,qs
and ps is parallel to x-ax, then there exists a (p,q)-path in Gg which connects all points

of S in the interior of the triangle pqs.

3 Proof of Main Theorem

If |E(conv S)| = 4 and E(conv S) = {ay,as,as,as} , by the assumption, any pair of
non-adjacent two edges of £(conv S) forms a good pair, then there exist no points of S in
the interior of convS. By Cor. 5, for each i there exists (a;, a;41)-path in Gg. Therefore
by combining these four pathes we obtain a Hamilton cycle of G.
Assume that |E(conv S)| > 5. By Lemma 3, Ps is an one-connected and monotone
orthogonal polygon with respect to both vertical line and horizontal line. By Lemma
2, there exists two deltas Ay, A.g such that the interior of its associated rectangle (say
a't'd'd’) contains no points of S.
We assume w.l.0.g that
z(a) < z(d) < z(b) < z(c) and y(a) < y(b).

Then y(d) < y(c) < y(a).
The edges ab,cd € E(conv S) divide the boundary of conv S into two brokenlines. We
denote by Bj the broken line having a,d as endpoints and similarly denote by Bs the
the broken line having b, ¢ as endpoints. Let A, B denote the point whose z-coordinate
is minimum or maximum among all points of S, respectively. Similarly let C,D denote
the point whose whose y-coordinate is minimum or maximum among all points of S,
respectively. Then A, C' lie in By and B, D lie in By. By removing the rectangle o’b'c’d’
from Pg, we have at most two orthogonal polygons P, P». It is possible that P, or P, is
empty. In deed if |E(conv S)| = 5 then bothe P; or P, is empty. We may assume that P;
lies in Pg facing to the vertical edge of A,y. Then Ps lies in G5 facing the vertical edge
of A.y.  We can divide each P; into a collection of more small rectangles by two steps
as follows.

First step: In P;, extend to downward the vertical leg of the delta of each edge of By
until it hits some delta. On the contrary in Ps, extend to upward the vertical leg of the
delta of each edge of By until it hits some delta.Then the interior of each P; is divided by
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Figure 4: Rectangles of R in the neighbor of A

some rectangles and some orthogonal rectangles containing some verticess whose interior
angles are reflex.

Second step: In each subdivision obtained by the first step, the side opposite to a reflex
vertex is an edge of £(conv S). Then for each subdivision T' containing reflex vertices and
for every reflex vertex t of T, extend the horizontal edge of the delta containing ¢ until it
hits some edge of T
Let R denote the collection of the rectangle a't’c’d’ and all the rectangles obtained by
the above steps. Thus for each rectangle R € R, there exists exactly one delta, say A,,,
which either the vertical leg or the horizontal leg of A, coinsides with some side of R.
Indeed, for any orthogonal polygon with reflexes in the subdivision in step 1 its all reflexes
vanish in step 2.

Consider a couple of R and A, and absorbe R and A, to get a trapezuim. All rectangles
of R except rectangle a’b'dd’ can contribute to make this coupling (see Fig.4). And all
deltas except two deltas (either of two deltas having A as vertices and either of two deltas
having B as vertices) contribute this pairing (see Fig.5). Then we obtain a collection 7 of
the trapeziums which gives a new partition of P;UP,. Hence for each edge xy € E(conv S)
which contributes to the above absorbing there exists a (z, y)-path in Gg passing through
all points of S in a trapezium of 7 which includes A,,. Let H be the set of all paths
described above. On the other hand, it is trivial that for each delta A,, (there exist at
most two such deltas) which does not contribute the abobe coupling there exists a (z, y)-
path in Gg passing through all points of S in A,,. From the assumption, the interior of

rectangle a'b’c’d’ contains no points of S. Hence each point of S is in some path of H.
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Figure 5: Orthogonal polygons P;, P, in the interior of Py

Since |E(conv S)| > 4, any two paths of H contains at most one point of S in common.

Thus H consists a Hamilton cycle of Gg. O
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Let S be a finite set of distinct points in the plane, R?. For a,b € R? let B(a,b) denote
the minimal closed box with sides parallel to the axes, containing a,b. Let Gg denote the
separation graph of S, that is, the graph on the set of vertices S in which a,b € S are
joined iff SN B(a,b) = {a,b}. The notions of separation and separation graph in R? were
introduced by Alon, Fiiredi and Katchalski in 1985. In this paper, we present a sufficient

condition for the existence of a Hamilton cycle in a separation graph.





