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1 Introduction

In this paper we will study a certain problem in equilateral triangle lattices. In [1]
the problem (Problem 25) is described as:

Ten coins are arranged as shown in Figure 1-A. What is the minimum
number of coins we must remove so that no three of the remaining
coins lie on the vertices of an equilateral triangle?

If we remove coins as shown in Figure 1-A, points z,y and z still consist of an
equilateral triangle. On the other hand if we remove coins as shown in Figure 1-B,
all the lattice points except the remaining four coins have an equilateral triangle.
In this paper we consider a generalized problem of the above problem. We start
by giving some definitions.

Consider a equilateral triangle T;, = ABC each of whose segment has length
n. We mark each point p on each peripheral segment S which has an integer
distance from the endpoints of S, and add all straight segments passing through
these points to be parallel to peripheral segments, as shown in Figure 2. The
number n is called the size of T,.

Let 7, be the set of triangle in T,,. A subset H of V(T},) be a destroyer if
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Figure 1-A Figure 1-B Figure 1-C

Figure 1: A coin problem
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Figure 2: T,
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Figure 3: B,

every three points of V(T,,) — H consist no triangle. Since {0,0',0"} consists of a
triangle for any n, we suppose w.l.o.g. that 0 is a vertex belong to any destroyer.
In [2] Nakamoto and Watanabe showed that the number f(n) of triangles in T}, is

given by the following:

n(n+2)(2n+1)
8

fln)=1 J-

Let D,, be the set of minimum destroyers. We denote by £(n) the size of any set
of D,,. Let be B, is the configuration as shown in Figure 3. We note that B, is a

destroyer of T),. Therefore we get

n(n —1)

€(n) <1+ 5

Our result is the following.

Theorem 1 D, = {B,} forie€{1,2,3,4}, and D5 = {Bs, N1, N2}
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where {N1, N2} are the configurations as shown in Figure 7.

Moreover, £(i) = 1+ nin—1) for each n € {1,2,3,4,5}.

2
The proofs are given in the next section for 77, T, T3, T4 and in the section
3 for T5.

2 The cases T1, 15, T3, Ty

In this section we will prove Theorem 1 in the cases of Ty, Ty, T3, T4, and T5 in
the next section . From now on, for the sake of convenience we often denote a set
by the product of the elements , for example 014’ = {0, 1,4'}.

We first consider 7;. Since 77 has a single triangle with three vertices o, o', 0",
it is clear that D; = {B1},£(1) = |B1|1. For T», B, is a destroyer, and every three
vertices of V(T3) \ V(B2) consists no triangle. Since 000" and 11'1" are disjoint
triangles, we get Dy = {Bs}, and £(2) = |Bs| = 2.

Next we consider T3. Call 3 the vertex which does not lie on the boundary of Ts.
Let H be any destroyer of T5. Since 132”,20'1',1""2'0" € T, then |H| > 4. On the
other hand Bs € Dj, then |H| < 4. Thus |H| = 4 and £(3) = 4. We will show that
D3 = {Bs}. To contradict we assume this is fault. From Lemma 2 we get that
|S; N H| < 1, then 1,2,0',0",1",2" ¢ H. Since 123,31"2" € T, 3 € H. Similarly,
1" € H since 20'1',1'0"2" € T, and 2' € H since 10'2',1'0"2" € 7. Thus H = Bs,
which is a contradiction. Thus we obtain D3 = {Bs}, and £(3) = |Bs3| = 4.

Here we need the following Lemmas to discuss about T}.

Lemma 2 Ifn <2 and D,—1 = {Bn-1}, then any H € D,, satisfies
[SsNnH|<n-1 forie{1,2,3}.
Moreover, if there exists i € {1,2,3} such that |S;NH| = n—1, then H—S; = Bp_;.

Lemma 3  Suppose that 2 < n < 5. Then for any H € D,, with H £B,,
|ISsNnH|<n-2 forie{l,2,3}.

Proof of Lemma 3: We assume that there exists ¢ € {1, 2,3} such that SiINH >
n. Then we get 1+ 3n(n—1) = |B,| > |H| = |SINH|+|H — Si| > n+|H - S;| Since
H - S, is a destroyer of T,,_1, $(n®*—3n+2) > |[H—S;| > |Ba_1| = 1+in(n—1) =
1+ %(n2 —3n+4) , which is a contradiction. Assume that S1iN H < n — 1. Then,
|H—Si|=|H|-|SiNH|=|H|-n+1<|Bp|—n+1=1(n?-3n+4) = |B,_1|.
By the assumption, D,,—; = {B,_1}, hence H — S; = B,,_;. (The end of the proof
of Lemma 3)

Proof of Lemma 4: For any D,, with H = B,,, from Lemma 3 we get |S1NH| <
n—1.If |Si|N H| = n — 1|, from Lemma 3 we get that H — S; = B,,_;. Since
Tn—=51 = Tnh-1, |S1|NH| > 14+ (n—1) = n, a contradiction. Thus |S;|NH| < n-1.
We assume that |S3| N H| < n — 1. Then by repeating the arguments we get
|H — Sa| = Bp—1. If 0/,0"” € H then SoNH ={1,2,---(n—1)'},and H = B,,, a
contradiction. Therefore there exists i’ € {1',2',---,(n—1)"} such that i’ ¢ H. On
the other hand 4i'i" € T, so4' € H, a contradiction. Hence we get |SeNH| =n—2.
(The end of the proof of Lemma 4)
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Figure 4: T,

Now we return to prove Theorem 1. We will show that Dy = {Bs}. Choose
H € Dy such that H £B,. By Lemma 4, we get |S;NH| <2 (i =1,2,3).

Claim 1. 0' ¢ H. Moreover, 0" ¢ H by the symmetry.
proof of Claim I: Assume that 0' € H. Then |(S;US2US3)NH| > 3. By Lemma3,
|SsNH| <2 (i=1,2,3). Hence, |(S1 US2US3) N H| = 3. However, 4i'i" € T for
any ¢ € {1,2,3}. Thus |(S; US2 U S3) N H| > 6, which is a contradiction.
Since 0"i'(4 — )" € T for any ¢ € {1,2,3}, i’ € H or (4 —i)” € H. Then
|SeNH| >3 or|S;N H| > 3, a contradiction. Thus we get 0' ¢ H.

Claim 2. |Se N H| > 2.
proof of Claim 2: Since 0'i'(4—i) € T for any i € {1,2,3},theni € Hor4—i € H.
If |S; N H| <1, then |S; N H| > 3, a contradiction.

From Claim 2 and Lemma 4 we get |SoNH| = 2. Then we get SoNH = {1',2'}
or So N H = {1',3'} by the symmetry. If So N H = {1',2'} then 1 € H, since
1,0'3" € 7. By Lemma 4, we obtain 2,3 ¢ H. Since 33'3" € T we get 3" € H. By
Lemma 4, we obtain 2”,1"” ¢ H. Since 3'0""1"” € T. Hence 1” € H, a contradiction.
In the case So N H = {1',2'}, we can also get a contradiction. Thus we obtain
Dy = {Ba}, and £(4) = 7.

3 The case T;

Now we discuss T5. We give the vertices of T, labels as shown Figure 5. For any
H € Ds, |H| < 11 since Bs € Ds. From now on we use the following notations:
S1:=1{0,1,2,3,4,0'}, S;:=8U{4", z 2,21},
Sy :={0,1,2,3",4',0"}, S5 :=S2U{4,2,9,21"},
Ss :={0",1",2",3",4",0}, S3:=S3U{4,z,y,z,1}.

From now on we assume that H = Bs.

Claim 3. |S1 N H| < 3. Moreover, |S3 N H| < 3 by the symmetry.
proof of Claim 3: Since £(4) = 7, we get |S1 N H| < 4. Assume that |S; N H| = 4.
Note that H — HN S, = H — S; is a destroyer of Ty. H — H N S; is either
of the three destroyers shown as Figure 6. In the case Figure 6a, we note that
1,2',3',4',1",2",3",4" ¢ H. Since 4i'i" €T or i € {1,2,3,4}, i € H, then we
get |S1 N H| > 5, a contradiction. In this case Figure 6b, Since 11'1” € T, then
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Figure 5: T;

Figure 6: T5

1 € H. Similarly, we get 2,3,4 € H. Then |S; N H| > 5, which is a contradiction.
In this case Figure 6c¢, if 4", z,2',2' ¢ H, then 1,2,3 € H. Since 44'4"” € T. Hence
|S1 N H > 5|, a contradiction. (The end of the proof of Claim 3)

Claim 4. 0' ¢ H. Moreover, 0" ¢ H.
proof of Claim 3: Assume that 0' € H. From Claim 1, |S; € H| < 3 for i = 1,3.
If 0" € H then |(S1 U Sz U S3) N H| <6, since |S; N H| < 3. On the other hand,
i'" € T for i € {1,2,3,4}, and we can not destroy all of the four independent
triangles. Then 0" ¢ H.
Since 0"i'(5 —7)" € T, we get

Fact 5. ' € Hor (5—14')"€ H,|SoNH|=|SsNH|=3.

Subclaim 4.1. SoNH ={0,1,4'} or SN H = {0,2,3'}.
proof of Claim 4.1:1t is sufficient to show that 1’ € H iff 4’ € H. By symmetry, if
4" € H implies 1’ € H, then 1’ € H implies 4' € H. Assume that 1’ € H. By Fact
S5wegetd” € H. If 4 ¢ H then 4’ € H. Hence if 4 € H then 1,2,3 ¢ H. Notice
that 2' ¢ H. Indeed, if 2' € H then 3" ¢ H,so 3' € H. Hence |SyNH| >4, a
contradiction. Similarly we get 3' ¢ H. By Fact 5 we get 4' € H. (The end of the
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proof of Subclaim 4-1).

From Subclaim 4.1 and the symmetry, we may assume w.l.o.g. that So € H =
{0',1",4'} or S3 € H = {0',2",3"}. Then 2',3',1",4" ¢ H by Fact 5 . Since
2'3'y' € T, we get y' € H. Similarly we get y',2',y,# € H. Then the number
of the other vertices is at most one. On the other hand 23z',14z €€ T are
independent, a contradiction. (The end of the proof of Claim 4)

Claim 5. |Se N H| > 2.
proof of Claim 5: If i’ ¢ H then (5 —14) € H, since 0'i'(5 — i) € T. Therefore, if
|Sz € H| < 1 then S; € H > 4, which contradict to Claim 4. (The end of the
proof of Claim 5)

Claim 6. |So N H| > 3.

proof of Claim 6: From Claim 5, we get |S; N H| > 2. Assume that |So N H| =
2. By the symmetry, we get So N H = {1',2'}, {1,3'}, {1',4'} or {2/,3'}. If
Se N H = {1',2'} then 33'3"” € T, which contradict to Claim 3. Simiraly, if
SeNH = {1',3'} then 32'2" € T, a contradiction. If SN H = {1',4'} then z € H
since 14"z € T. Similarly, we get y',2,2’ € T. However 1”3'y € T, which is a
contradiction. If So N H = {2',3'} then 2’ € H since 23z’ € 7. Similarly, we get
y',z,2' € T. y,x,y € T. However 21’z € T, which is a contradiction. (The end
of the proof of Claim 6)

From Claim 6. we obtain [Sy N H| > 3 or 4.

Case 1. S; € H = 4.
Then |H — Sp| = |H| —|S2 € H| < |Bs| —4 =7 =|B4|. Then H — Sy = By, that
iSHEB5.

Case 2. |S1 € H| = 3.
By the symmetry, w.l.o.g, we may assume that |SoNH| = {1',2",3'} or |SoNH| =
{1',2",3'} Subase 2-1. |Sy N H| ={1',2",3'}
Since 0'4'1,4'0"1" € T, we get 1,1" € H.

Claim 7. If 4 € H, then 4" € H.
proof of Claim 7. If 4" ¢ H, then 4 € H. Assume that 4’ ¢ H. Since 44'4" €
T,4 € H. Then 2,3 ¢ H , since |S; N H| < 3. Hence z',y,2z € H, since
23z',24"y,34"2 € T. Then the number of the other vertices to allow as vertices
of H is at most one. However 2"zy,3"2'4" € T are independent, a contradiction.
(The end of the proof of Claim 7)
From Claim 7, we get 4" € H. Then 2",3" ¢ H. Therefore y,y',z € H, since
2773y 2"4'y’' 3"4'2" € T. Then the number of the other vertices to allow as
vertices of H is at most one. However, 23z', 3”22’ € 7. Thus 2’ € H. Thus we
get a destroyer as shown in Figure 7. We call the configuration Ny — conf;. Case
2-2. |SeNH|={1,2,4"}
Then 2,2" € H, since 0'3'2,0"3'2" € T.

Claim 8. 3¢ H.
proof of Claim 8 Assume that 3 € H. Then 1,4 € H, since |S; N H| < 3.
|Ss € H| = 3. Indeed, if 1”,3",4" ¢ H then 2',y’' € H, since 174"2',1"3"y' € T.
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N; — conf. N5 — conf.

Figure 7: N1 — configuration. and N» — configuration.

However, 12'3" € H, which is a contradiction. If 1” € H, then we get ' € H,
since 13”2’ € 7. Then |H| = 11, but 3'2'y € H , which is a contradiction. Then
1" ¢ H. If 3" € H, we get 2z’ € H, since 1"4"27 € T. Then |H| = 11, but
z'yy' € H, a contradiction. If 4" € H, we get y' € H, since 1”3"y' € 7. Then
|H| =11, but 3'yz’ € H, a contradiction. (The end of the proof of Claim 8)

From Claim 8, if 3 ¢ H then 3" € H, since 33'3" € T. Then 1”,4" ¢ H, since
|Ss N H| < 3. Since 1"3'y € T, we get y € H. Similarly we get z', 2,z € H, since
4"1"y 34"2,14"2,3y'z € T. Thus we get a destroyer as shown in Figure 8. We
call the configuration Ny — con fs.

From the above we checked on all cases, and it turned out that three configurations
B —5., N1 — conf;. and Ny — confs. are all the minimal destroyers. We clearly get
&(5) = 11. This completes the proof of Theorem 1.
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Consider an equilateral triangle T;, = ABC each of whose segment has length
n. We mark each point p on each peripheral segments S which has an integer
distance from the endpoints of S, and add all straight segments passing through
these points to be parallel to peripheral segments. A subset H of V(T,) be a
destroyer if every three points of V(T,) — H consist no triangle. Let D,, be the
set of minimum destroyers. We denote by £(n) the size of any set of D,,. We will

show that £(n) = 1+ ﬂ%—_—l)

configurations attaining to &(n)

for each n € {1,2,3,4,5}, and determine all the





