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1. Introduction

Let X be a connected, locally connected and locally compact Hausdorff space with
a countable basis and (X, H) be an elliptic biharmonic space in the sence of Smyrnélis
[9]. We denote by (X, H;) (=1, 2) the Brelot’s harmonic spaces associated with
(X, H) and by W(X) the totality of bounded continuous Wiener functions of (X, H;)
(=1, 2). In this note we consider analogously the totality of bounded continuous
Wiener functions W(X, H) of an elliptic biharmonic space (X, H) (see § 3 for the
definition) and give a characterization of W(X, H) as follows.

Supposing that (X, H) has the H,-Green’s function and the constant function 1 is in
W®(X), we shall show that the following six conditions are equivalent :

(1) (0, )EW(X, H); () (0, ) is H-harmonizable, where e,=4{ ;

@) W, 1)+¢ ;

(4) SGl(x, v)ey)da(y) < +co for some xE X, where G,(x, v) is the H,-Green’s function
of X and « is the composing measure of (X, H) :

G {F: 0, NeEW(X, H}=W(X); (6) W(X, H)=W(X)x WO(X).

Let (X¥, X%) be a couple of two compactifications of X and (Ai, A,) be a couple of
their ideal boundaries(i. e. A,=X;—X (=1, 2). A couple (X¥, X?) is called H-
resolutive if for any couple (£, £) of bounded continuous functions f; on A,(j=1, 2)
there exists (H, (4, £),H.(f, £,))€H(X) with the boundary value (£, f,). Supposing
that there exists (4, )= S(X) with ;I;l)f( t(x)>0 (=1, 2) and the constant function 1 ia
in W?(X), we shall show that (X}, X¥) is H-resolutive if and only if X¥ is
Hj-resolutive (=1, 2). Hence in this case we know that the Riquier’s boundary value
problem on the ideal boundaries has an unique solution.

2. Biharmonic spaces

Let X be a connected,locally connected and locally compact Hausdorff space with
a countable basis. For an open set U=¢ in X, we denote by C(U) the real vector
space of finite continuous functions on U. An element (%, %) in C(U) X C(U) is called
compatible if %, =0 on an open subset U’ of U implies 2,=0 on U’. Let H be an
application U —» H(U), where H(U) is a real vector subspace of compatible couples in
C(U)X C(U). An ellement in H(U) is called H-harmonic in U.
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A relatively compact open set w in X is called H-regular if for any couple of

(i, £2) of finite continuous functions on the boundary dw of @, there exists a unique
(h, k)€ H(w) such that:

(i) lxizralhj(x)zfj(a) for any a €dw (j=1, 2) ;
(ii) £=0 (=1, 2) implies /=0 and £, =0 implies % =0.

For an H-regular set w, there exists a unique system (u%, v%, A%) of positive Radon
measures on dw such that

()= rdug+ (e, m(0)={pare.

This system is called the system of biharmonic measures of (X, H).
We say that (X, H) is an elliptic biharmonic space in the sence of Smyrnélis [9] if
it satisfies the following four axioms.

Axiom I. H is a sheaf on X.
Axiom II. The H-regular open sets form a basis of X.

Let U be an open set in X. A couple (v, ©) of functions on U is called H-
hyperharmonic on U if

(i) v, is lower semi-continuous and >—oc on U(j=1, 2),
(ii) vl(x);gvldﬂ?+gvzdu? and vz(x)%gvzd/lﬁ for any H-regular neigh-
borhood w of x with @C U.

The set of all H-hyperharmonic couples on U is denoted by H*(U). A couple
(1, $)EH*(U) is called H-superharmonic on U if s; is not identically +c0 on any
connected component of U (=1, 2) and an H-superharmonic couple (p,, p.) on U is
called H-potential on U if p;=0 and, for any (%, k)= H(U), h;=0 so far as
0 h;<p; (=1, 2). The set of all H-superharmonic couples (resp. H-potentials) on U
is denoted by S(U) (resp. P(U)). For an open set U, we put H¥(U)
={v, : (v, 0eHX(U)}, H¥}(U)={v, : (v, m)€H*(U) for some v}, and H,(U)
=H}U)N[-H} (V)] (j=1,2).

Axiom III. (i) H*(X) separates the points of X linearly (=1, 2).
(ii) On each relatively compact open set U there exists a strictly
positive ,E H{U) (=1, 2).

Axiom IV. If Uisadomainin X and {44}, is an increasing sequence of functions
in H,(U), then either sup WP=+co or sup e H(U) (=1, 2).

Set H;={H,(U): U is open set in X}. It is shown by Theorem 1.29 in [9] that
(X, H;) (j=1, 2) is a Brelot’s harmonic space. We call (X, H;) (=1, 2) the Brelot’s
harmonic space associated with (X, H). The set of all H-superharmonic functions
(resp. H-potentials) on U is denoted by S;(U)(resp. P,(U)(j=1, 2).

Let (X, H) be an ellptic biharmonic space and (X, H;) (=1, 2) be the Brelot’s
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harmonic space associated with (X, H). Denote by Q' the set of all H-regular sets in
X. We say that (X, H,) has a consistent system {G{(x, y) . w€EQ} of H,-Green’s
functions if to each wEQ there corresponds a function G#(x, y) on @ X w having the
following properties:
(i) for each yEw, G¥( -, v) is an H,-potential on w and H;-harmonic on o—{y},
(ii) if @Cw, @’€Q and yEw’ then the function G¥(x, y)—G¥(x, v) of x is
H,-harmonic on &’ ;
(iii) for each H,-potential p on w, there exists a unique positive Radon measure g
on w such that p(x)=S (x, v)dB(y).

By Theorem 9 in [13] we have

Lemma 1. Let (X,H) be an elliptic biharmonic space. Suppose that (X, H,) has a
consistent system {G¥(x, y) . w=Q} of H,-Green’s functions. Then there exists a unique
positive Radon measure a on X such that

ve=\Getx, v)agda(y)
for any wEQ and any xEw, that is for any finite continuous function f on X

Yrave=(cece, 9)(§fans)dat).

This positive Radon measure « is called the composing measure of (X, H). By
virtue of the compatibility of biharmonic couples, this measure is everywhere dense
in X.

A biharmonic space (X, H) is called strict if it satisfies the following axiom.

Axiom (P) : For any point xE X, there exists (5, p)EP(X) such that p,(x)>0
(=1, 2).

From now on we suppose that a biharmonic space (X, H) is strict. Let E be a closed
set in X and (u, w,)E H*(X)*. We put (Rf (e, u.), RE¥(e, w,)=(infw,, infw,) where
(v, »)EH*(X)* and v;Zu; on E(j=1, 2). We denote by (R¥(w, u), R5(w, u,)) the
lower semi-continuous regularization of (Rf(w, ), R¥(w, u.)). By Corollary 5.7 in
(9], (RE(w, us), RE(w:, u,)) is H-hyperharmonic on X and H-harmonic on X —E.

For an open set UC X and a couple (f,, /) of real valued functions on the boundary
oU of U, we denote by VV(f,, £) the set of lower bounded couples (v, v.)EH*(U)
such that non-negative outside a compact set of X and

lim infu,(x)2 £(e) (=1, 2)

for anya €9U and we put VU(f;, £)={(v, u) I (=0, —w)EVI(—4, —£)}.
If VU(f, f2) and VY(£, £,) are both non-empty, we put

(HY(A, ), HY(#, £))=(infv,, infv,) where (0, w)E VY4, £),
(HY(A, f), HY(fi, £2))=(supw, supw,) where (o, ,)E VI(£, £),

Then by Corollary 5.7 in [9], (HY(#, ), HY(£, £)) and (HY(A, £), HY(f, £)) are
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H -harmonic on U and H{f,, £)ZH{(A, f) (=1, 2).
H(HY (A, £), HY (i, L)=(H(f, £), HY(£, f»)) we denote by (Hi(A, £), Hx(A, 12)) the

common couple.

Lemma 2. Let U be an open set in X. Then for any (uy, w)EH*(X)*, we have
(R¥ Y, ), RE (w1, w))=(H (s, wo), HY (s, w2)) om U.
Proof. Let (v, .)€ VY(u,, uw,) and

(n, 10,)= (01, u;) on X—U
b (inf(z,, v,), inf(us, v2) on U

Then (w, w)eH*(X)* and (w1, ws)=(wu,, u,) on X—U. Hence
(RE (i, u), R¥ Y(uy, u))=<(wi, 1) on U and so we have

(E{{_U(ul) ), Ei\’_u(ul, uz)é(ﬁf'(ul, Up), Héj(ul: uz»

Conversely for any (v, v)€H*(X)* satifing (v, ) 2(w, #) on X—U, we have
(0, 1.)E VY(uy, up). Therefore we get

(RE (w1, wp), RE Y (w, ) 2(HY (w1, ), HY (s, wo)).

Lemma 3. Let be a compact set of X and (s1, s2)€8(X)*.
Then (R (s, ), R¥(s1, :))EP(X).

Proof. Let L be a compact subset satisfing KCL. Since (R¥(s,, s2), R%(s1, s)) is
H-harmonic on X—X and (X, H) is strict, there exists an H-potential (f1, p») such
that R%(s,, s,)=<p; on L (j=1, 2). Since

(R{((Sl, Sz), ]?5{(81, Sz)):(ﬁf{_K(Sly Sz), ﬁé\"'{(sh Sz))
on X—K and

(}7'1\’_1((31, Sz), gér_K(Sl, Sz))
:(ﬁi‘,_l‘(ﬁ{((sh Sz), Rg(sl, Sz)), E%(_L(R{((SI; SZ)» jéé((sl) SZ))

on X—L, we have (R{(s,, s2), R¥(s1, s2)=(pn, p2) on X—L.
Hence (R¥(s, ), R¥(s1, s))EP(X).

3. Wiener functions of (X, H)
Let (f;, £) be a couple of real valued functions on X. We set W(f, f)
={(s, )E8(X) : s;=f; on for some compact set K in X (=1, 2)},
WA, £)={(s;, &) T (=81, =s)EW(—fi, —f)}. If W(f, £)*¢ and W(A, )+ ¢,
we put
(ZA(fi, ), Rafi, £))={inf s, inf s;) where (51, s)E W(A, £),
(Ia(A, 1), BelAi, £2))=(sup s, sup s;) where (s;, ;)€ W (£, fo).
Then by Theorem 5.6 in [9] we have (%.(fi, £)), ki, £))EH(X),
(Wlh, £, B(h, PNEH(X) and (oA, £), holh, ) Z(lh, ), klfi, 1))
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Lemma 4. If W(A, £,)*+¢ and W(f, £,)F ¢, then there exists (1, p2)EP(X) and
Jor any €>0 :

(hi(A, £), Bofi, £))+elpr, p)EW (A, )
((A, 1), ke, 2))—e(pn, p)E W (A, 1)

Proof. We take (s, s)E W(#, £,) such that
St = A, £), 89— Fallf, 5))

is convergent at a point. Let K, be a compact set such that s =7 on X—K, (=1, 2).
Let {X,} be an exhaustion of X satisfing K.C X, for i<2n. We put

PO=RE(st"— hilh, £), s— hof, £)) (=1, 2). By Lemma 3, (p”, 8”) being an
H -potential on X, (p, 1‘)2):’12:}1(155"’, ) is an H-potential on X. For any >0

we take m satisfing mg?, then for any £ 21 and xE Xni2r— Knin,

R, R)E)+ep(n)2 Rih, K@) +E 5T ()

_ 1 2m+2k ) > . 2
= et S5 @) 2 f(x) (=1, 2).

Since (21(A, £), kS, L)+ elp, p2)=(f, o on X—Xns, we have
(B, 1), R, ) +elpy, p)EW(A, £).

Definition 1. A couple (£, £,) of real valued functions on X is called H-harmoni
-zable if (hi(A, £, Rdh, R)=(lf, £), kA, £)). In this case we denote by
(lil A, £), kA, 1)) the common couple.

Let (s, s;) be an H-superharmonic couple on X with an H-subharmonic minorant
couple. Then (s, s;) is H-harmonizable and (/u(s, s.), (s, s:)) is the greatest
H -harmonic minorant of (s, s,).

Theorem 1. If (f, ;) and (¢, @) are H-harmonizablethen o(f, f,)+B(q, ¢)
(a, BER), (max(f, g1), max(f;, ¢) and (min(f, ¢)), min(fe, g)) are H-harmonizable.
In this case we have
hiafi+ B, afet Bg)=ahifi, )+ Bhig, ¢)(7=1, 2),

(l(max(f, @), max(fe, @), hmax(f, ¢), max(f, ¢))) is the least H-harmonic
majorant of (m(f,, £,), ki, 12)) and (g, @), heq, 92)) and

(m(min(#, g, min(fs, g2), ke(min(fi, @), min(h, ) is the greatest H-harmonic
minorant of (h(f, f2), hefi, 1)) and (g, ¢), hq1, 92)).

Proof. By Lemma 4 it is easily shown that (£, £)+(g, @), a(fi, £)@=0) and
(—=A£, —/f;) are H-harmonizable. Hence a(f;, £)+8(q, ¢.) is H-harmonizable and
hj(afl'l_Bgl, afet Bgz)zahj(ﬁ, fz)"‘ﬂhj(gl, gz)(jzl, 2).

Since (%u(f, £), kA, 1)) and (ulg,, g2), kg, ¢)) are expressed by the difference of
non-negative H-harmonic couples, there exists their least H-harmonic majorant
(21, u2). By Lemma 4, there exist (p1, #2), (q1, ¢2)€ P(X) such that
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(W fi, 1), ho(fiy L))+ e(pr, D)EW (A, fo)
(g, @), hlgn, @:))+elan, @)EW (g, g2)

Then (wi, )+ &(pr, D)+ elq, g2)E W(max(fi, g1), max(fz, ¢)) and so we have
7 (max(fi, g1), max(fz, ¢2))< u;(j=1, 2). On the other hand, we have
hi(max(fi, ¢1), max(fs, g2)) Zhi(A, f2), kg, g2)(G=1, 2) and so

himax(f, g1), max(fs, ¢))=u;(G=1, 2). Hence (max(#, @), max(f;, g2)) is
H-harmonizable and k(max(f, ¢.), max(fs, g))=u;j=1, 2).

We denote by HP(X) the totality of all H-harmonic couples on X which are
differences of non-negative H-harmonic couples, by W(X, H) the totality of all
H-harmonizable couples and by Wo(X, H) the totality of all couples
(£, L)EW(X, H) satisfing hi(£, £)=0 (=1, 2).

By Lemma 4, we have the following characterization of (#, £) in Wo(X, H).

Lemma 5. A couple (£, £,) is in W(X, H) if and only if there exists (p, p2)E P(X)
such that |fi|<p{i=1, 2) outside a compact set in X.

Lemma 6. If (0, EW(X, H) and f =0, then h(0, f) is a continuous Hi-potential
on X and we have h(0, f)(x)=SGl(x, )00, f)da(y).

Proof. Since (0, /) W(X, H) and f=0, ({0, f), k0, f)) is a non-negative
H -harmonic couple on X and so /0, £)€ 8i(X)*. By Lemma 5, there exists (1, 2)
€ P(X) such that for any €>0 (Ju(0, £), #2(0, £))—e&(pr, p2)EW(0, £). Hence k(0, f)
< ¢epr outside a compact set in X and so /{0, /)€ Pi(X). The integral representaion is
shown by Lemma 1.

Theorem 2. We have the following direct decomposition:
W(X, H)=HP(X)®OWs(X, H).

Let (X, H;)(J=1, 2) be the Brelot’s harmonic space associated with (X, H). For a
real-valued function on X, we set W¥={s€S8;(X) : s=f outside a compact set} and
WP={s: —s€EWY). If W+¢, WP+ ¢, we define 2P =infW9 and hY’=supW$.
We say that f is H;-harmonizable if 2% =#4% and denote the common value by #%. A
function 7 on X is called a Wiener function of (X, H;) if f is bounded continuous and
H;-harmonizable. The totaity of Wiener functions of (X, H;) is denoted by WY(X).
A function f is called a Wiener potential of (X, H;) if f€ WY(X) and #¥=0. The
totality of Wiener potentials of (X, H;) is denoted by W§(X)(j=1, 2). Similarly we
shall give the definition of Wiener functions of (X, H) as follows.

Definition 2. A couple of bounded continuous H-harmonizable functions is called a
Wiener function of (X, H). The totality of Wiener functions of (X, H) is denoted by
W(X, H). A couple (f,, ,)EW(X, H) is called a Wiener potential of (X, H) if it
satisfies hi(f, £,)=0 (=1, 2). The totality of Wiener potentials of (X, H) is denoted
by Wo(X, H).
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From the definition it follows immediately that {f : (f, 0)€ W(X, H)}=W"(X),
{r (0, NeW(X, H)}CW®(X) and m(f, 0)=1P, h(0, f)=hP. Further we have

Lemma 7. W(X, H)CW®(X)X WA(X) and Wo(X, H)IC WM X)X W(X).

Proof. Let (£, £)EW(X, H) and ff=max(f, 0), /;=max(—f, 0)(j=1, 2). Then
(A, £)=(A, H)~(f1, £2) and (f1, f2), (fi, f2)EW(X, H) by Theorem 1. Hence we
may suppose that ;20 (=1, 2). By Theorem 2, (£, £)=(m(f, f), k£, £))+(q1, g2)
with (g1, ¢)E Wo(X, H). By Lemma 5 and Corollaire 5.16 in [9], we know that g; is
Hj-harmonizable and 4§)=0 (j=1, 2). Since m(f;, £,)(resp. h(fi, £;)) is a nonnegative
Hi-superharmonic(resp. He-harmonic) function, #(f;, %) is Hi-harmonizable (resp.
ho( £, f2) is Hy-harmonizable). Hence we have f;=h;(f,, £,)+ g€ W X)(=1, 2).

From now on we suppose that (X, H,) has a consistent system {G?(x, y) : ¥EQ} of
H,-Green’s functions. Then (X, H,) being strict, there exists an H,-Green’s function
Gi(x, y) on X such that G?(x, y)=Gi(x, y)—SGl(z, v)dug(z) for any € Q and there
exists the composing measure @ of (X, H) by Lemma 1.

As for the inverse inclusion of Lemma 7 we have the following
Theorem 3. Suppose that 1€ W(X) and put e;=h?. Then the following (1), (2), (3),
4), (5) and (6) are equivalent:

(1) (0, 1)ew(X, H);

(2) (0, e2) is H-harmonizable;

@) WO, D*¢

@) \Gix, y)ey)da(y)< +oo for some xEX ;
6) {F:0, NEW(X, H)})=WAX) ;

6) W(X, H)=WY(X)x W(X).

Proof.(1)=>(2) There exists (s, 5)=S(X)* such that ;=1 outside a compact set.
Then ;= hf”=e; and so (s, &)= S(X)*. Since (s, e;) and (s, 0) are H-harmonizable,
(0, e2)=(s1, e2)—(s1, 0) is H-harmonizable. (1)=(3) This is evident from the definition.
(2)=(4) Since (0, ez) is H-harmonizble,(4(0, ), %0, e5))=(q1, e2)SH(X) and by
Lemma 6 /(0, es)=gq: is continuous Hi-potential on X. Therefore we have q.( x)
:SGl(x, v)exy)da(y) by Lemma 1 and so we have (3). It is easy to show that (4)=(2).
(2)=(5) Since {7 : (0, HEW(X, H)C WA(X), it suffices to show the inverse inclusion.
Let f be in W®(X). By Theorem 2.2 in [6] we may assume that 0<f<1. We put
g=f—hP, then g is Hy-harmonizable and %@=0. Since W(0, e;) + $, there exists (s,, s,)
EW(0, ). Then ;24P and so (s, AP)ES(X)*. Since (s, #?) and (s, 0) are
H-harmonizable, (0, #%) is H-harmonizable. By Lemma 2.2 in [6] there exists p.€
Py(X) such that |g|< p. outside a compact set. Denote by #: the Hi-potential part of s.
Then (24, min(2ss, p2))E P(X) by Corollary 5.16 in [9] and (0, |g]) < (2p,, min(2ss, ).
Hence (0, g) is H-harmonizable by Lemma 5. Therefore (0, £)=(0, #?)+(0, g) is
H -harmonizable and so (0,/)€ W(X, H). (3)=(5) This is shown similarly to the above
proof. (5)=(6) Since W(X, H)YC W™ X)X W®(X) by Lemma 7, it suffices to show
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the inverse inclusion. Let (£, )€ W™( X)X W®(X). Then (£, 0)€ W(X, H) and (0,
fIEW(X, H). Hence (f,, £,)=(f, 0)+(0, L) EW(X, H). (6)=(1) Since 0€ W(X)
and 1€ W2(X), we have(0, 1)e W(X, H).

Remark. In the cases (5) and (6) we have {f : (0, /)E WX, H)}=W{(X) and
WX, H)=WP(X)x WP(X).

4. Resolutive compactifications of (X, H).

Let (X, H;) be the Brelot’s harmonic space associated with (X, H), X} be a
compactification of X and A, be the ideal boundary of X} (=1, 2). For a real valued
function f on A;, we denote by V¥ the set of lower bounded s;€S5,(X) such that
lilginfsj(x)gf(a) for any a€A, and we set V¥ ={s; . —s;& VY}(j=1, 2).

If V¥ and V¥ are both non-empty, we put HY’=inf V> and HY=sup V.
If HY=HY, f is called H;resolutive and we denote by H¥ the common value
(=1, 2).

For any p;€ P{X) we put T(p;)={a €A;: lirg%znfp,-(x)=0},
;= NT(p;) where p;€ P{(X) and A;=A;—T(j=1,2). A compactification X7} is called
an Hjresolutive compactification if any bounded continuous function f on A; is
Hj-resolutive (=1, 2). In this case , a point a,EA; is called H,regular if for any
bounded continuous function f on A;, L{n;HSf’( x)=F(a;) (=1, 2). All points in A; are
not Hj-regular (=1, 2).

Now we consider the following condition (M. P.).

(M. P.) : There exists (#, &) € S(X) such that irel)f{tj(x)>0 (=1, 2).

Lemma 8. (1) If the constant function 1 is in WP(X) and (X, H) satisfies the
condition (M. P.), then six conditions in Theovem 3 ave satisfied.

(2) Conversely if the constant function 1 is in WO(X)NWE(X) and one of six
conditions in Theorem 3 is satisfied, then (X, H) satisfies the condition (M. P.).

Proof. (1) Since W(0, 1)+ ¢, this is trivial. (2) If the condition (1) in Theorem 3 is
satisfied, then there exists (s, s)E8(X)* such that (s, s;)=(0, 1) outside some
compact set in X. Since 1€ WW(X),there exists »:€ 8i(X)* such that »,=1 outside
some compact set in X. Hence by virtue of Axiom (P), the condition (M. P.) is satisfied.

In this section we suppose that (X, H) satisfies the condition (M. P.). In this case we
have the following minimum principle by Theorem 4.1 in [6].

Lemma 9. Let (1, )€ H*(X). If there exists (p1, p2)EP(X) such that v;+p; is
lower bounded and lirg Lnfv,-(x);o for any e€T'; (j=1, 2),then (v, v2) 2(0, 0).

Let (X#, X#) be a couple of two compactifications of X and (A,, Az) be a couple of
their ideal boundaries (i. e. A;,=X*—X (=1, 2)). For a couple (£, £) of real valued
functions f; defined on ideal boudaries A; (7=1, 2), we denote by V*(#, f.) the set of
lower bounded couples (s;, s,)&S(X) such that for any a €A,
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lim infs(x)2/{a) (j=1, 2),

and we set V*(f;, £)={(s1, 52) : (=51, ~)E VX(—Af, =L} If V*(A, £) and V*(£, f2)
are both non-empty, we put

(H(f,, £), Hf, £))=(infs, infs;) where (s1, s,)E V*(£, £),
(Hi(£, £), Hf, £))=(supsi, sups:) where (s, ;)& V*(£, £),

Then by Corollary 5.7 in [9],(Hi(f, £), HXf, £)) and (H(f, £), H{f, f)) are
H-harmonic on X. By Lemma 9, they are expressed by differeces of non-negative
H-harmonic couples and (Hi(f, £), HiA, 1) Z(HlA, ), HLA, 1)

If (Hi(#, ), HAA, £)=EH(A, £), Hf, £)), (A, ;) is called H-resolutive and denote
by (Hi(#, ), H£, £)) the common couple. It is easly shown that if (f, 0)(resp. (0, f))
is H-resolutive, then f is H,resolutive (resp.Hresolutive) and Hi(f, 0)=H®
(resp. HX0, )=H®P).

For any (1, p2)EP(X) we put

L(p, p2)={(a, a)EAIX Ay ligriglfﬁj(x)zo (7=1, 2)}

and T=NT(p), p2) where (p1, .)€ P(X). Then we have

Lemma 10. =TI XT:

Proof. Let (a1, a2) €T X T2 For any (#, p2)€ P(X), p; being in P{X) (=1, 2) by
Corollaire 5.13 in [9], we have lirxrltil?fp,-(x)=0 (=1, 2) and so (a, az)ET".
Hence we have I'DI'y XT'». Conversely let (a1, a2) be any point in T". We take p;= Pi(X)
(=1, 2). Then (1, 0) being in P(X), hm mfpl(x) 0 and so €T By the condition
(M. P.), there exists (#, &) S(X) such that 1nf t(x)=c;>0 (j=1, 2). Then we have

(h, min(f, £2))ES(X)*. Let v=h— V. Then we know that (g, min(%, p2))ES(X)*,

@€ Pi(X) and min(%, p.)E P(X). Hence (gi, min(k, p2))E P(X) by Corollaire 5.16 in
[9]. Therefore

lim inf min(&(x ), p(x))=0.

Since lir;rl gnf min{%( x ), po( x))=min(c,, lim 2nf1>z( %)), we have H{E 2nfpz( x)=0 and so

a:ET'2. Hence we know that I'CT XTI,

By virtue of the condition (M. P.) we have the following

Theorem 4. Let (f, fo) be a couple of bounded continuous functions f; on X
(7=1, 2). Then (f,, LYEWLX, H) if and only if ;=0 on T; (j=1, 2).

Proof. If (f,, L)EWo(X, H), then there exists (p1, #:)EP(X) such that |f]=<p;
(7=1, 2) outside a compact set. Hence f;=0 on I'; (j=1, 2). Conversely if /,=0 on T';
(7=1, 2), then f; being in W§(X) there exists p;&€ P{X) such that |£|<p; (=1, 2) on
X. By virtue of the condition (M. P.) there exists (#, £)€S(X) such that ||
(7=1, 2). Put qi=p+(6—41¥) and g:=min(ps, ). Then (q, g)&P(X) and If,|<q,
(7=1, 2). Hence (#;, £L)EWo(X, H) by Lemma 5.
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Similary to Lemma 4, we have
Lemma 11. If V*(#, ;) and V*(f, f,) are both non-empty, there exists (s, )
eS(X)* such that for any >0

(Hi(f, £), H, ) +els, s,)E VA, £),
(Hi(A, 1), HA, ) —elsi, $)EV*(A, £).

Using this lemma we have the following theorem similarly to the proof of Theorem
1.

Theorem 5. If (£, f,) and (g1, g) are H-resolutive, then o(f, f,)+(q, ¢)(e, BER),

(max(f, ), max{(fs, g2)) and (min(f, g1), min(f, ¢)) are H-resolutive and in this case
we know that

Hi(afi+ Bgi, afs+ Bg)=aH(fi, f)+BH{ ¢, @) (7=1, 2),

(H(max(f, ¢, max(fs, g2)), HAmax(f, ¢1), max(fe, ¢2))) is the least H-harmonic
majorant of (H\(fi, £2), Hifi, f2)) and (Hi(g\, 92), H{ g\ g2) and

(Hi(min(h, qv), min(fe, g)), H{min(f, @), min(fe, ¢2))) s the greatest H-harmonic
minovant of (Hi(A, 1), Ho(#, 12)) and (Hi(g, g2), H{ ¢, g2)).

By this theorem, there exists a unique system of positive Radon measures
(1%, vE, A%) on ideal boundaries such that

Hi(f, 1)) =\faus+(fuavt, B, 2)(0)=(fedit.
Where p} is a measure on A; and vi and A} are measures on A..

Lemma 12. If (0, f) is H-resolutive and f=0, then H\(0, f) is a continuous
Hi-potential on X and we have

H(0, N(x)={Gix V0, 1) ) =G, 9)(§fhs ).

Proof. Since (Hi(0, f), Hx0, ))EH(X) and H;(0, /)20 (=1, 2) by Lemma 9,
Hy(0, /) is a non-negative continuous H,-superharmonic function on X. For any
H;-harmonic minorant #, of H(0, f), we have #,=0 and so H:(0, f) is a continuous
Hi-potential on X. The integral representaion is shown by Lemma 1.

Lemma 13. Let f; be a bounded continuous function on Xi (j=1, 2). Then (£, f»)
is H-resolutive if and only if (f, f,) is H-harmownizable. In this case we have

(Hl(fl, fz), Hz(fu fz)):(l’h(fx, fz), hz(fl, fz))-
Proof. Since W(£,, £,)C V*(f, £,), we have

(H(A, £), HLA, INE(R(A, 1), kA, 5).
Let (4, %) be in S(X) such that ig}t;z‘,-(x)>0 (j=1, 2). For any (s, .)€ V*(#,, £,) and

€>0, (s, s2)+e(t, 1) being in W(A, £), (hif, £2), kho(fi, £))=(s1, s2)+e(h, t). Hence
we have the inverse inequality

(H(#, f), B, L)=(h(f, £), Rdh, £)).
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Therefore we get (Hi(£, £), H:#., £)=(F:(#, £.), #{f,, ;). Similary we have the
relation (H\(A, ), HeAi, £))=(lh, %), kA, £2)).

. Definition 3. A couple (Xt, X3) of two compactifications of X 1is called
H-resolutive compactification if for any of bounded continuous functions f; on A;
(G=1, 2), a couple (#, f,) is H-resolutive.

By Lemma 13 we have

Theorem 6. A couple (X{t, X3¥) of compactifications of X is H-resolutive
compactification if and only if for any bounded continuous function f; on X¥ (=1, 2),
(fi, £) is in W(X, H).

Further we shall show the following

Theorem 7. Suppose that the constant function 1 is in WB(X). Then a couple
(Xt X3) of two compactifications of X is H-resolutive if and only if X} is
Hj-resolutive compactification of the associated Brelot’s harmonic space (X, H;)
(G=1, 2). In this case we have

Hf, £)=HR+(Gi( -, WHR)daly), Hilh, £)=HS)

Jor any couple (f,, f2) of bounded continuous functions f; on A; (=1, 2).

Proof. Let f be any bounded continuous function on Ai(resp. As}. Then {(f, 0)
(resp. (0, f)) being H-resolutive, f is Hy-resolutive (resp. He-resolutive) and H%¥
=Hi(f, 0), H?=Hx0, ). Conversely let (£, f;) be any couple of bounded continuous
functions f; on A; (=1, 2) and f} be a bounded continuous function on X} such that
f¥=fon A; (=1, 2). Then fr€WX) (=1, 2) by Theorem 4.4 in [6]. Since
W X)X WE(X)=W(X, H), we know that (f¥, f$)€W(X, H). Hence (£, f2) is
H-resolutive by Lemma 13 and so (X{, X#) is H-resolutive. The integral representa-
tion is shown by Lemma 12.

By Lemma 1 and Theorem 4.7 in [6], we have

Corollary. Suppose that the constant function 1 is in WI(X). If a couple
(Xt, X¥) of two compactifications of X is H-vesolutive, then Supp(ui)=T1 and
Supp(v1)=Supp(A})=T".

Definition 4. Let (Xt, X#) be a H-resolutive compactification. A couple (a1, az) of
points a;EA(j=1, 2) is called H-regular, if for any couple (f,, f,) of bounded continu-
ous functions f; on A; (G=1, 2),

}({IEPL(J‘I, R(x)=f(a;) (=1, 2).

If the constant function 1 is in W®(X), then a couple (a1, az) of points a,EA;
(7=1, 2) is H-regular if and only if a; is H;-regular (=1, 2). Hence all couples (@, a@2)
&T are not H-regular by Lemma 10.

Suppose that the constant function 1 is in W®(X) and W@(X). Let X} be the
Wiener compactification of (X, H;) (=1, 2). Then X} is H;-resolutive and all points



64

Hidematsu TANAKA

in I'; are Hy-regular (=1, 2) by Corollary 5.1 and Theorem 5.4 in [6]. Hence in this case
we have the following

Corollary. (c. f. Theorem 7 in [12]) If the constant function 1 is in WN(X) and
WO(X), then the Riquier’s boundary value problem on the ideal boundaries has a
unique solution (i. e. for any couple (£, f,) of bounded continuous functions f; on A;
(j=1, 2), there exists a unigue (uy, )< H(X) such that lxiflt}uj(x)=f,-(a) Jor any

a€T{(j=1,2)).
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